Nanomaterials (Oct 2024)
Diffusion-Induced Ordered Nanowire Growth: Mask Patterning Insights
Abstract
Innovative methods for substrate patterning provide intriguing possibilities for the development of devices based on ordered arrays of semiconductor nanowires. Control over the nanostructures’ morphology in situ can be obtained via extensive theoretical studies of their formation. In this paper, we carry out an investigation of the ordered nanowires’ formation kinetics depending on the growth mask geometry. Diffusion equations for the growth species on both substrate and nanowire sidewalls depending on the spacing arrangement of the nanostructures and deposition rate are considered. The value of the pitch corresponding to the maximum diffusion flux from the substrate is obtained. The latter is assumed to be the optimum in terms of the nanowire elongation rate. Further study of the adatom kinetics demonstrates that the temporal dependence of a nanowire’s length is strongly affected by the ratio of the adatom’s diffusion length on the substrate and sidewalls, providing insights into the proper choice of a growth wafer. The developed model allows for customization of the growth protocols and estimation of the important diffusion parameters of the growth species.
Keywords