International Journal for Parasitology: Parasites and Wildlife (Dec 2020)

Sex-biased polyparasitism in moose (Alces alces) based on molecular analysis of faecal samples

  • Magdalena Świsłocka,
  • Anetta Borkowska,
  • Maciej Matosiuk,
  • Magdalena Czajkowska,
  • Norbert Duda,
  • Rafał Kowalczyk,
  • Mirosław Ratkiewicz

Journal volume & issue
Vol. 13
pp. 171 – 177

Abstract

Read online

Simultaneous infection with multiple parasite species in an individual host is often observed in wild populations. The understanding of parasite species distribution across populations of wild animals is of basic and applied importance, because parasites can have pronounced effects on the dynamics of host population. Here, we quantified prevalence and endoparasite species richness in moose and explored sex-biased polyparasitism using diagnostic PCR method coupled with DNA sequencing of moose faecal samples from the Biebrza River valley, North-Eastern Poland. This is the largest moose population in Central Europe that has not been harvested for almost 20 years. We also evaluated the appropriate quantity of faeces for detecting DNA of parasite species. Faecal samples were screened for molecular markers of 10 different species of endoparasites. Endoparasite prevalence was high in the studied population. Almost all of the samples (98%) tested positive for at least one parasite species, and we found polyparasitism in the majority of the tested individuals. The number of different parasite species found in a single individual ranged from 0 to 9. The parasite species richness was significantly higher in male than in female individuals. The most prevalent were liver fluke Parafasciolopsis fasciolaemorpha and gastrointestinal nematodes Ostertargia sp. Of the ten endoparasite species detected, only the prevalence of the tapeworm Moniezia benedeni was significantly higher in males than in females. Additionally, we identified co-occurrence associations of parasite species, which tended to be random, but we noted some evidence of both positive and negative associations. Our findings promote applications of molecular methods for parasite species identification from non-invasively collected faecal samples in management and scientific study of moose population, which should include investigation of parasite status, and in health monitoring programs for other wild cervids.

Keywords