NeuroImage (Aug 2023)
Intrinsic brain activity is increasingly complex and develops asymmetrically during childhood and early adolescence
Abstract
A large body of evidence suggests that brain signal complexity (BSC) may be an important indicator of healthy brain functioning or alternately, a harbinger of disease and dysfunction. However, despite recent progress our current understanding of how BSC emerges and evolves in large-scale networks, and the factors that shape these dynamics, remains limited. Here, we utilized resting-state functional near-infrared spectroscopy (rs-fNIRS) to capture and characterize the nature and time course of BSC dynamics within large-scale functional networks in 107 healthy participants ranging from 6-13 years of age. Age-dependent increases in spontaneous BSC were observed predominantly in higher-order association areas including the default mode (DMN) and attentional (ATN) networks. Our results also revealed asymmetrical developmental patterns in BSC that were specific to the dorsal and ventral ATN networks, with the former showing a left-lateralized and the latter demonstrating a right-lateralized increase in BSC. These age-dependent laterality shifts appeared to be more pronounced in females compared to males. Lastly, using a machine-learning model, we showed that BSC is a reliable predictor of chronological age. Higher-order association networks such as the DMN and dorsal ATN demonstrated the most robust prognostic power for predicting ages of previously unseen individuals. Taken together, our findings offer new insights into the spatiotemporal patterns of BSC dynamics in large-scale intrinsic networks that evolve over the course of childhood and adolescence, suggesting that a network-based measure of BSC represents a promising approach for tracking normative brain development and may potentially aid in the early detection of atypical developmental trajectories.