Advanced Science (Jul 2023)
Dual Charge Transfer Generated from Stable Mixed‐Valence Radical Crystals for Boosting Solar‐to‐Thermal Conversion
Abstract
Abstract Realizing dual charge transfer (CT) based on stable organic radicals in one system is a long‐sought goal, however, remains challenging. In this work, a stable mixed‐valence radical crystal is designed via a surfactant‐assisted method, namely TTF‐(TTF+•)2‐RC (where TTF = tetrathiafulvalene), containing dual CT interactions. The solubilization of surfactants enables successful co‐crystallization of mixed‐valence TTF molecules with different polarity in aqueous solutions. Short intermolecular distances between adjacent TTF moieties within TTF‐(TTF+•)2‐RC facilitate both inter‐valence CT (IVCT) between neutral TTF and TTF+•, and inter‐radical CT (IRCT) between two TTF+• in radical π‐dimer, which are confirmed by single‐crystal X‐ray diffraction, solid‐state absorption, electron spin resonance measurements, and DFT calculations. Moreover, TTF‐(TTF+•)2‐RC reveals an open‐shell singlet diradical ground state with the antiferromagnetic coupling of 2J = −657 cm−1 and an unprecedented temperature‐dependent magnetic property, manifesting the main monoradical characters of IVCT at 113–203 K while the spin‐spin interactions in radical dimers of IRCT are predominant at 263–353 K. Notably, dual CT characters endow TTF‐(TTF+•)2‐RC with strong light absorption over the full solar spectrum and outstanding stability. As a result, TTF‐(TTF+•)2‐RC exhibits significantly enhanced photothermal property, an increase of 46.6 °C within 180 s upon one‐sun illumination.
Keywords