Remote Sensing (Jul 2024)

Multiple Land-Use Simulations and Driving Factor Analysis by Integrating a Deep Cascade Forest Model and Cellular Automata: A Case Study in the Pearl River Delta, China

  • Haoming Zhuang,
  • Xiaoping Liu,
  • Yuchao Yan,
  • Bingjie Li,
  • Changjiang Wu,
  • Wenkai Liu

DOI
https://doi.org/10.3390/rs16152750
Journal volume & issue
Vol. 16, no. 15
p. 2750

Abstract

Read online

Cellular automata (CA) models have been extensively employed to predict and understand the spatiotemporal dynamics of land use. Driving factors play a significant role in shaping and driving land-use changes. Mining land-use transition rules from driving factors and quantifying the contribution of driving factors to land-use dynamics are fundamental aspects of CA simulation. However, existing CA models have limitations in obtaining accurate transition rules and reliable interpretations simultaneously for multiple land-use simulations. In this study, we constructed a CA model based on a tree-based deep learning algorithm, deep cascade forest (DCF), to improve multiple land-use simulations and driving factors analysis. The DCF algorithm was utilized to mine accurate multiple land-use transition rules without overfitting to improve CA simulation accuracy. Additionally, a novel ensemble mean decrease of impurity (MDI) factor importance analysis method (DCF-MDI), which leverages the cascade structure of the DCF model, was proposed to qualify the contribution of each driving factor to land-use dynamics stably and efficiently. To evaluate the effectiveness of the proposed DCF-CA, we applied the model to simulate land-use distributions and explore the driving mechanisms of land-use dynamics in the Pearl River Delta (PRD), China, from 2000 to 2010. Compared to existing models, the proposed DCF-CA model exhibits the highest accuracy (FoM = 23.79%, PA = 39.77%, UA = 36.35%, OA = 91.50%), which demonstrates its superiority in mining accurate transition rules for capturing multiple land-use dynamics. Factor importance analysis reveals that the proposed DCF-MDI method yields more stable ranking orders and lower standard deviation of contribution weights (<0.10%) compared to the traditional method, indicating its robustness to random disturbances and effectiveness in elucidating the driving mechanisms of land-use dynamics. The DCF-CA model proposed in this study, demonstrating high simulation accuracy and reliable interpretability simultaneously, can provide substantial support for sustainable land use management.

Keywords