PLoS ONE (Jan 2016)

Transcriptomic Profile of Whole Blood Cells from Elderly Subjects Fed Probiotic Bacteria Lactobacillus rhamnosus GG ATCC 53103 (LGG) in a Phase I Open Label Study.

  • Gloria Solano-Aguilar,
  • Aleksey Molokin,
  • Christine Botelho,
  • Anne-Maria Fiorino,
  • Bryan Vinyard,
  • Robert Li,
  • Celine Chen,
  • Joseph Urban,
  • Harry Dawson,
  • Irina Andreyeva,
  • Miriam Haverkamp,
  • Patricia L Hibberd

DOI
https://doi.org/10.1371/journal.pone.0147426
Journal volume & issue
Vol. 11, no. 2
p. e0147426

Abstract

Read online

We examined gene expression of whole blood cells (WBC) from 11 healthy elderly volunteers participating on a Phase I open label study before and after oral treatment with Lactobacillus rhamnosus GG-ATCC 53103 (LGG)) using RNA-sequencing (RNA-Seq). Elderly patients (65-80 yrs) completed a clinical assessment for health status and had blood drawn for cellular RNA extraction at study admission (Baseline), after 28 days of daily LGG treatment (Day 28) and at the end of the study (Day 56) after LGG treatment had been suspended for 28 days. Treatment compliance was verified by measuring LGG-DNA copy levels detected in host fecal samples. Normalized gene expression levels in WBC RNA were analyzed using a paired design built within three analysis platforms (edgeR, DESeq2 and TSPM) commonly used for gene count data analysis. From the 25,990 transcripts detected, 95 differentially expressed genes (DEGs) were detected in common by all analysis platforms with a nominal significant difference in gene expression at Day 28 following LGG treatment (FDR<0.1; 77 decreased and 18 increased). With a more stringent significance threshold (FDR<0.05), only two genes (FCER2 and LY86), were down-regulated more than 1.5 fold and met the criteria for differential expression across two analysis platforms. The remaining 93 genes were only detected at this threshold level with DESeq2 platform. Data analysis for biological interpretation of DEGs with an absolute fold change of 1.5 revealed down-regulation of overlapping genes involved with Cellular movement, Cell to cell signaling interactions, Immune cell trafficking and Inflammatory response. These data provide evidence for LGG-induced transcriptional modulation in healthy elderly volunteers because pre-treatment transcription levels were restored at 28 days after LGG treatment was stopped. To gain insight into the signaling pathways affected in response to LGG treatment, DEG were mapped using biological pathways and genomic data mining packages to indicate significant biological relevance.ClinicalTrials.gov NCT01274598.