Minerals (May 2023)

Mineral Assemblage of Olivine-Hosted Melt Inclusions in a Mantle Xenolith from the V. Grib Kimberlite Pipe: Direct Evidence for the Presence of an Alkali-Rich Carbonate Melt in the Mantle Beneath the Baltic Super-Craton

  • Alexander V. Golovin,
  • Alexey A. Tarasov,
  • Elena V. Agasheva

DOI
https://doi.org/10.3390/min13050645
Journal volume & issue
Vol. 13, no. 5
p. 645

Abstract

Read online

This report deals with the first mineralogical examination of secondary crystallized melt inclusions (CMIs) in healed cracks within olivine in a mantle peridotite xenolith from the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province). In contrast to micro/nano-inclusions in diamonds, the studied CMIs are quite large (up to 50 µm), so that the mineral composition of the CMIs can be determined via conventional analytical approaches, e.g., Raman spectroscopy and scanning electron microscopy. Garnet peridotite is a coarse-grained mantle rock that equilibrates at 3.3 GPa and 750 °C (corresponding to a depth of ~100 km). The CMIs are therefore tiny snapshots of melt that existed in the shallow lithospheric mantle and were entrapped in olivine. In total, nineteen mineral species were identified among the daughter magmatic minerals of the CMIs. Various Na-K-Ca-, Na-Ca-, Na-Mg-, Ca-Mg-, Mg- and Ca-carbonates; Na-Mg-carbonates with the additional anions Cl−, SO42− and PO43−; alkali sulfates; chlorides; phosphates; sulfides; oxides; and silicates were established. Within the mineral assemblage, carbonates were predominant, with their abundance being more than 62 vol.%. The CMIs contained twelve alkali-rich minerals; nine of them were Na-bearing and showed bulk molar (Na + K)/Ca ≥ 1. The CMIs’ parental melt was an alkali-rich carbonate liquid that contained low amounts of SiO2 (≤9.6 wt%) and H2O (≤2.6 wt%). According to our estimates, the time of complete equilibration between olivine within the healed cracks and host olivine in the mantle at the calculated P-T parameters for the studied xenolith should be no more than several years. Based on this geologically short time span, a genetic link between the studied CMIs and the magmatism that formed the V. Grib kimberlite pipe is suggested.

Keywords