ESAIM: Proceedings and Surveys (Jan 2018)
Numerical methods for Stochastic differential equations: two examples
Abstract
The goal of this paper is to present a series of recent contributions arising in numerical probability. First we present a contribution to a recently introduced problem: stochastic differential equations with constraints in law, investigated through various theoretical and numerical viewpoints. Such a problem may appear as an extension of the famous Skorokhod problem. Then a generic method to approximate in a weak way the invariant distribution of an ergodic Feller process by a Langevin Monte Carlo simulation. It is an extension of a method originally developed for diffusions and based on the weighted empirical measure of an Euler scheme with decreasing step. Finally, we mention without details a recent development of a multilevel Langevin Monte Carlo simulation method for this type of problem.