Brain Stimulation (Nov 2022)
Magnetic-field-synchronized wireless modulation of neural activity by magnetoelectric nanoparticles
Abstract
The in vitro study demonstrates wirelessly controlled modulation of neural activity using magnetoelectric nanoparticles (MENPs), synchronized to magnetic field application with a sub-25-msec temporal response. Herein, MENPs are sub-30-nm CoFe2O4@BaTiO3 core-shell nanostructures. MENPs were added to E18 rat hippocampal cell cultures (0.5 μg of MENPs per 100,000 neurons) tagged with fluorescent Ca2+ sensitive indicator cal520. MENPs were shown to wirelessly induce calcium transients which were synchronized with application of 1200-Oe bipolar 25-msec magnetic pulses at a rate of 20 pulses/sec. The observed calcium transients were similar, in shape and magnitude, to those generated through the control electric field stimulation with a 50-μA current, and they were inhibited by the sodium channel blocker tetrodotoxin. The observed MENP-based magnetic excitation of neural activity is in agreement with the non-linear M − H hysteresis loop of the MENPs, wherein the MENPs’ coercivity value sets the threshold for the externally applied magnetic field.