Structure-Based Design of Potent and Selective Ligands at the Four Adenosine Receptors
Willem Jespers,
Ana Oliveira,
Rubén Prieto-Díaz,
María Majellaro,
Johan Åqvist,
Eddy Sotelo,
Hugo Gutiérrez-de-Terán
Affiliations
Willem Jespers
Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre (BMC), BOX 596, SE-751 24 Uppsala, Sweden
Ana Oliveira
Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre (BMC), BOX 596, SE-751 24 Uppsala, Sweden
Rubén Prieto-Díaz
Centro Singular Investigación Quimica Biologica e Materiales Moleculares (CIQUS), Departamento de Quimica Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
María Majellaro
Centro Singular Investigación Quimica Biologica e Materiales Moleculares (CIQUS), Departamento de Quimica Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Johan Åqvist
Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre (BMC), BOX 596, SE-751 24 Uppsala, Sweden
Eddy Sotelo
Centro Singular Investigación Quimica Biologica e Materiales Moleculares (CIQUS), Departamento de Quimica Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Hugo Gutiérrez-de-Terán
Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre (BMC), BOX 596, SE-751 24 Uppsala, Sweden
The four receptors that signal for adenosine, A1, A2A, A2B and A3 ARs, belong to the superfamily of G protein-coupled receptors (GPCRs). They mediate a number of (patho)physiological functions and have attracted the interest of the biopharmaceutical sector for decades as potential drug targets. The many crystal structures of the A2A, and lately the A1 ARs, allow for the use of advanced computational, structure-based ligand design methodologies. Over the last decade, we have assessed the efficient synthesis of novel ligands specifically addressed to each of the four ARs. We herein review and update the results of this program with particular focus on molecular dynamics (MD) and free energy perturbation (FEP) protocols. The first in silico mutagenesis on the A1AR here reported allows understanding the specificity and high affinity of the xanthine-antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX). On the A2AAR, we demonstrate how FEP simulations can distinguish the conformational selectivity of a recent series of partial agonists. These novel results are complemented with the revision of the first series of enantiospecific antagonists on the A2BAR, and the use of FEP as a tool for bioisosteric design on the A3AR.