Applied Sciences (Sep 2020)

A Conceptual Investigation at the Interface between Wireless Power Devices and CMOS Neuron IC for Retinal Image Acquisition

  • AlaaDdin Al-Shidaifat,
  • Sandeep Kumar,
  • Shubhro Chakrabartty,
  • Hanjung Song

DOI
https://doi.org/10.3390/app10186154
Journal volume & issue
Vol. 10, no. 18
p. 6154

Abstract

Read online

In this paper, a conceptual investigation of the interface between wireless power devices and a retina complementary metal oxide semiconductor (CMOS) neuron integrated circuit (IC) have been presented. The proposed investigation consists of three designs: design-I, design-II, and design-III. Design-I involves a slotted loop monopole antenna as per American National Standards Institute (ANSI) guidelines, which achieve an ultra-wide band ranging from 3.1 GHz to 10.6 GHz. The biocompatible antenna is made on silicon-nitride substrate using on-wafer packaging technology and it is used as a receiver device. The performance of antenna provides a wideband, sufficient power to receive, and low losses due to the avoidance of printed circuit board (PCB) fabrication. A CMOS based multi-stack power harvesting circuit achieves the output power ranging from 4 mW to 2.7 W and corresponds from the selected Radio Frequency (RF) bands of loop antenna is exhibited in design-II. The power efficiency of 40% to 82%, with respect to output powers of 4 mW to 2.7 W, is achieved. Design-III includes a CMOS based retina neuron circuit that employs a dynamic feedback technique and support to achieve the number of read-out spikes. At the end of the interface between wireless power devices and a CMOS retina neuron IC, 50 mV read-out spikes are achieved, with varying light intensity, from 0 mW/cm2 to 2 mW/cm2. The proposed design-II and design-III are implemented and fabricated using commercial CMOS 0.065 µm, Samsung process. The antenna and RF power harvesting IC could be placed on a contact lens platform while retina neuron IC can be implanted after ganglions cells inside the eye. The antenna and harvesting IC are physically connected to the retina circuit in the form of light. This conceptual investigation could support medical professionals in achieving an interfacing approach to restore the image visualization.

Keywords