International Journal of Chemical Engineering (Jan 2016)

Parametric Analysis of a High Temperature PEM Fuel Cell Based Microcogeneration System

  • Myalelo Nomnqa,
  • Daniel Ikhu-Omoregbe,
  • Ademola Rabiu

DOI
https://doi.org/10.1155/2016/4596251
Journal volume & issue
Vol. 2016

Abstract

Read online

This study focuses on performance analysis of a 1 kWe microcogeneration system based on a high temperature proton exchange membrane (HT-PEM) fuel cell by means of parametric investigation. A mathematical model for a system consisting of a fuel processor (steam reforming reactor and water-gas shift reactor), a HT-PEM fuel cell stack, and the balance-of-plant components was developed. Firstly, the fuel processor performance at different fuel ratios and equivalence ratio was examined. It is shown that high fuel ratios of 0.9–0.95 and equivalence ratios of less than 0.56 are suitable for acceptable carbon monoxide content in the synthetic gas produced. Secondly, a parametric study of the system performance at different fuel and equivalence ratios using key system operating parameters was conducted. Steam-to-carbon ratio, stack operating temperature, and anode stoichiometry were varied to observe the changes in the microcogeneration system. The analysis shows that the system can reach electrical and cogeneration efficiencies of 30% and 84%, respectively.