Фізика і хімія твердого тіла (Nov 2021)
Preparation and Characterization of Nanosized Substituted Perovskite Compounds with Orthorhombic Structure
Abstract
In this work, five substituted perovskite such as (Gd0.9Sr0.1) Mn0.8Co0.2O3, Tb0.8Sr0.2FeO3, Gd0.6Sr0.4RuO3, SrCe0.95Y0.05O3, and Mn0.6Co0.4SnO3 were synthesized by tartrate and hydroxide precursor method. The resulting samples were characterized by inductively coupled plasma spectroscopy, energy dispersive X-ray analysis, infrared spectroscopy, thermal analysis, X-ray powder diffraction, transmission electron microscope (TEM), selected field of electron diffraction (SAED), d.c. electrical conductivity, Hall effect, dielectric measurements, and low-temperature magnetization measurements. The X-ray diffraction pattern for all compounds was indicated the formation of single-phase perovskite with orthorhombic structure except Tb0.8Sr0.2FeO3 and Mn0.6Co0.4SnO3 perovskite. These compounds showed a cubic and rhombohedral structure, respectively. The lattice parameter and the unit cell volume slightly decreased as ionic radii decrease in agreement with the lanthanide contraction. The average size of cation ˂ RA ˃, mismatch factor (σ2), and tolerance factor (t) gives the combined effects of disorder and inhomogeneity in these compounds. The average particle size determined from TEM was in the range of 22 to 77 nm for all compounds. The temperature dependence of electrical conductivity for all compounds showed a definite break in 500 K to 610 K. except the Gd0.6Sr0.4RuO3 compound, which corresponds to semiconducting behavior. While the Gd0.6Sr0.4RuO3 sample shows a metallic-like semiconductor. The thermoelectric power and Hall effect measurements for all compounds were n-type semiconductivity except the SrCe0.95Y0.05O3 compound. It showed p-type semiconductivity. The frequency dependence of the dielectric constant and dielectric loss in these substituted perovskites were discussed using the Maxwell-Wagner model. Magnetic studies showed that the thermo-magnetic irreversibility for all compounds.
Keywords