BMC Public Health (Mar 2024)
Long-term exposure to ambient PM2.5 and its components on menarche timing among Chinese adolescents: evidence from a representative nationwide cohort
Abstract
Abstract Background Ambient air pollutants have been suggested to affect pubertal development. Nevertheless, current studies indicate inconsistent effects of these pollutants, causing precocious or delayed puberty onset. This study aimed to explore the associations between long-term exposure to particulate matter with aerodynamic diameters ≤ 2.5 μm (PM2.5) along with its components and menarche timing among Chinese girls. Method Self-reported age at menarche was collected among 855 girls from China Health and Nutrition Survey 2004 to 2015. The pre-menarche annual average concentrations of PM2.5 and its components were calculated on the basis of a long-term (2000–2014) high-resolution PM2.5 components dataset. Generalized linear models (GLM) and logistic regression models were used to analyze the associations of exposure to a single pollutant (PM2.5, sulfate, nitrate, ammonium, black carbon and organic matter) with age at menarche and early menarche (< 12 years), respectively. Weighted quantile sum methods were applied to examine the impacts of joint exposure on menarche timing. Results In the adjusted GLM, per 1 µg/m3 increase of annual average concentrations of nitrate and ammonium decreased age at menarche by 0.098 years and 0.127 years, respectively (all P < 0.05). Every 1 µg/m3 increase of annual average concentrations of PM2.5 (OR: 1.04, 95% CI: 1.00-1.08), sulfate (OR: 1.23, 95% CI: 1.01–1.50), nitrate (OR: 1.23, 95% CI: 1.06–1.43) and ammonium (OR: 1.32, 95% CI: 1.06–1.66) were significantly positively associated with early menarche. Higher level of joint exposure to PM2.5 and its components was associated with 11% higher odds of early menarche (P = 0.04). Additionally, the estimated weight of sulfate was the largest among the mixed pollutants. Conclusions Long-term exposure to PM2.5 and its components could increase the risk of early menarche among Chinese girls. Moreover, sulfate might be the most critical components responsible for this relationship. Our study provides foundation for targeted prevention of PM2.5 components.
Keywords