Stem Cells International (Jan 2016)

Tackling Cancer Stem Cells via Inhibition of EMT Transcription Factors

  • Megan Mladinich,
  • Diane Ruan,
  • Chia-Hsin Chan

DOI
https://doi.org/10.1155/2016/5285892
Journal volume & issue
Vol. 2016

Abstract

Read online

Cancer stem cell (CSC) has become recognized for its role in both tumorigenesis and poor patient prognosis in recent years. Traditional therapeutics are unable to effectively eliminate this group of cells from the bulk population of cancer cells, allowing CSCs to persist posttreatment and thus propagate into secondary tumors. The therapeutic potential of eliminating CSCs, to decrease tumor relapse, has created a demand for identifying mechanisms that directly target and eliminate cancer stem cells. Molecular profiling has shown that cancer cells and tumors that exhibit the CSC phenotype also express genes associated with the epithelial-to-mesenchymal transition (EMT) feature. Ample evidence has demonstrated that upregulation of master transcription factors (TFs) accounting for the EMT process such as Snail/Slug and Twist can reprogram cancer cells from differentiated to stem-like status. Despite being appealing therapeutic targets for tackling CSCs, pharmacological approaches that directly target EMT-TFs remain impossible. In this review, we will summarize recent advances in the regulation of Snail/Slug and Twist at transcriptional, translational, and posttranslational levels and discuss the clinical implication and application for EMT blockade as a promising strategy for CSC targeting.