Generalized Kelvin–Voigt Creep Model in Fractal Space–Time
Eduardo Reyes de Luna,
Andriy Kryvko,
Juan B. Pascual-Francisco,
Ignacio Hernández,
Didier Samayoa
Affiliations
Eduardo Reyes de Luna
School of Engineering and Sciences, Tecnologico de Monterrey, Av. Carlos Lazo 100, Santa Fe, La Loma, Mexico City 01389, Mexico
Andriy Kryvko
Instituto Politécnico Nacional, SEPI-ESIME Zacatenco, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
Juan B. Pascual-Francisco
Departamento de Mecatrónica, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún Km. 20, Ex-Hacienda de Santa Barbara, Zempoala 43830, Mexico
Ignacio Hernández
Instituto Politécnico Nacional, SEPI-ESIME Zacatenco, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
Didier Samayoa
Instituto Politécnico Nacional, SEPI-ESIME Zacatenco, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
In this paper, we study the creep phenomena for self-similar models of viscoelastic materials and derive a generalization of the Kelvin–Voigt model in the framework of fractal continuum calculus. Creep compliance for the Kelvin–Voigt model is extended to fractal manifolds through local fractal-continuum differential operators. Generalized fractal creep compliance is obtained, taking into account the intrinsic time τ and the fractal dimension of time-scale β. The model obtained is validated with experimental data obtained for resin samples with the fractal structure of a Sierpinski carpet and experimental data on rock salt. Comparisons of the model predictions with the experimental data are presented as the curves of slow continuous deformations.