Ultrathin Hematite Photoanode with Gradient Ti Doping
Pengfei Liu,
Chongwu Wang,
Lijie Wang,
Xuefeng Wu,
Lirong Zheng,
Hua Gui Yang
Affiliations
Pengfei Liu
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Chongwu Wang
School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore
Lijie Wang
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Xuefeng Wu
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Lirong Zheng
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Hua Gui Yang
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
The poor photoelectrochemical (PEC) performance derived from insufficient charge separation in hematite photoanode crucially limits its application. Gradient doping with band bending in a large region is then considered as a promising strategy, facilitating the charge transfer ability due to the built-in electric field. Herein, we developed a synthetic strategy to prepare gradient Ti-doped ultrathin hematite photoelectrode and systematically investigated its PEC performance. The as-synthesized electrode (1.5-6.0% doping level from the surface to the substrate) delivered a photocurrent of about 1.30 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (RHE), which is nearly 100% higher than that of homogeneously doped hematite electrode. The enhanced charge transfer property, induced by the energy band bending due to the built-in electric field, has been further confirmed by electrochemical measurements. This strategy of gradient doping should be adaptable and can be applied for other functional materials in various fields.