Radiation Oncology (Aug 2022)
A novel knowledge-based prediction model for estimating an initial equivalent uniform dose in semi-auto-planning for cervical cancer
Abstract
Abstract Background We developed a novel concept, equivalent uniform length (EUL), to describe the relationship between the generalized equivalent uniform dose (EUD) and the geometric anatomy around a tumor target. By correlating EUL with EUD, we established two EUD–EUL knowledge-based (EEKB) prediction models for the bladder and rectum that predict initial EUD values for generating quality treatment plans. Methods EUL metrics for the rectum and bladder were extracted and collected from the intensity-modulated radiotherapy therapy (IMRT) plans of 60 patients with cervical cancer. The two EEKB prediction models were built using linear regression to establish the relationships between EULr and EUDr (EUL and EUD of rectum) and EULb, and EUDb (EUL and EUD of bladder), respectively. The EE plans were optimized by incorporating the predicted initial EUD parameters for the rectum and bladder with the conventional pinnacle auto-planning (PAP) initial dose parameters for other organs. The efficiency of the predicted initial EUD values were then evaluated by comparing the consistency and quality of the EE plans, PAP plans (based on default PAP initial parameters), and manual plans (designed manually by different dosimetrists) for a sample of 20 patients. Results Linear regression analyses showed a significant correlation between EUL and EUD (R2 = 0.79 and 0.69 for EUDb and EUDr, respectively). In a sample of 20 patients, the average bladder V40 and V50 derived from the EE plans were significantly lower (V40: 30.00 ± 5.76, V50: 14.36 ± 4.00) than the V40 and V50 values derived from manual plans (V40: 36.03 ± 8.02, V50: 19.02 ± 5.42). Compared with the PAP plans, the EE plans produced significantly lower average V30 and Dmean values for the bladder (V30: 50.55 ± 6.33, Dmean: 31.48 ± 1.97 Gy). Conclusions Our EEKB prediction models predicted reasonable initial EUD values for the rectum and bladder based on patient-specific geometric EUL values, thereby improving optimization and planning efficiency.
Keywords