IEEE Access (Jan 2021)

Spatial Resolution Enhancement of Brillouin Optical Correlation-Domain Reflectometry Using Convolutional Neural Network: Proof of Concept

  • Jelah N. Caceres,
  • Kohei Noda,
  • Guangtao Zhu,
  • Heeyoung Lee,
  • Kentaro Nakamura,
  • Yosuke Mizuno

DOI
https://doi.org/10.1109/ACCESS.2021.3110874
Journal volume & issue
Vol. 9
pp. 124701 – 124710

Abstract

Read online

Brillouin optical correlation-domain reflectometry (BOCDR) is a fiber-optic distributed sensing technique with single-end accessibility and high spatial resolution. In BOCDR, the measured Brillouin gain spectrum (BGS) distribution is generally given by a convolution of the intrinsic BGS distribution and the beat-power spectrum. In most conventional implementations, the Brillouin frequency shift (BFS) distribution is directly obtained using the measured BGS distribution. Determining the BFS distribution on the basis of the intrinsic BGS distribution will give potentially higher spatial resolution, which can be achieved by deconvolution of the measured BGS distribution. In this work, we employ a convolutional neural network to perform this deconvolution processing in BOCDR and show its potential for spatial resolution enhancement. A spatial resolution which is 5 times higher than the nominal value is demonstrated.

Keywords