BMC Immunology (Sep 2021)

The augment of regulatory T cells undermines the efficacy of anti-PD-L1 treatment in cervical cancer

  • Fengying Xu,
  • Fengying Zhang,
  • Qian Wang,
  • Ying Xu,
  • Shuifang Xu,
  • Caihong Zhang,
  • Lihua Wang

DOI
https://doi.org/10.1186/s12865-021-00451-7
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Immune checkpoint inhibitors have aroused great expectation of tumor eradication. However, the effect of anti-PD-L1 treatment for cervical cancer is unsatisfactory and the underlying antagonist to anti-PD-L1 efficacy is remained to be studied. Here, we investigated the anti-tumor effect of anti-PD-L1 treatment in cervical tumor model and identified the antagonist to the therapeutic efficacy of anti-PD-L1 treatment. Results We found that PD-L1 exhibited a moderate expression in both cervical tumor cell lines and clinical samples compared to other tumor types and the para-tumor tissue respectively. Interestingly, our results showed that the anti-PD-L1 treated mice were dichotomously divided into responsive and unresponsive group after five cycles of anti-PD-L1 treatment although all the mice had the same genome background. In addition, the unresponsive tumors showed less tumor necrosis area and higher immunosuppression activity induced by regulatory T cells (Tregs) population than the responsive ones. Furthermore, we found that anti-PD-L1 treatment autonomously upregulated Tregs proliferation and frequency in multiple immune organs, and, most importantly, Tregs depletion significantly depressed the tumor growth rate and tumor weight compared with either anti-PD-L1 or anti-CD25 treatment alone. Finally, we observed that the upregulating effector CD8+ T cell is associated with the better therapeutic effect of anti-PD-L1 therapy post Tregs depletion. Conclusions Anti-PD-L1 treatment upregulates Tregs frequency and proliferation in tumor model, and the depletion of Tregs may be a useful adjuvant strategy for anti-PD-L1 therapy of cervical cancer.