Applied Sciences (Mar 2021)
Design of Road-Side Barriers to Mitigate Air Pollution near Roads
Abstract
The effects of using solid barriers on the dispersion of air pollutants emitted from the traffic of vehicles on roads located over flat areas were quantified, aiming to identify the geometry that maximizes the mitigation effect of air pollution near the road at the lowest barrier cost. Toward that end, a near road Computational Fluid Dynamics (NR-CFD) model that simulates the dispersion phenomena occurring in the near-surface atmosphere (R2 > 0.96) with the sulfur hexafluoride (SF6) concentrations measured by the US-National Oceanic and Atmospheric Administration (US-NOAA) in 2008 downwind a line source emission, for the case of a 6m near road solid straight barrier and for the case without any barrier. Then, the effects of different geometries, sizes, and locations were considered. Results showed that, under all barrier configurations, the normalized pollutant concentrations downwind the barrier are highly correlated (R2 > 0.86) to the concentrations observed without barrier. The best cost-effective configuration was observed with a quarter-ellipse barrier geometry with a height equivalent to 15% of the road width and located at the road edge, where the pollutant concentrations were 76% lower than the ones observed without any barrier.
Keywords