Friction (Dec 2023)

Photoinduced superlubricity on TiO2 surfaces

  • Ke Han,
  • Liran Ma,
  • Yu Tian,
  • Jianbin Luo

DOI
https://doi.org/10.1007/s40544-023-0736-8
Journal volume & issue
Vol. 12, no. 3
pp. 428 – 438

Abstract

Read online

Abstract Superlubricity control is of great interest in both industry and scientific research, and several methods have been proposed to achieve this goal. In this work, ultraviolet (UV) light was introduced into titanium dioxide (TiO2) and silicon nitride (Si3N4) tribosystems to accomplish photoinduced superlubricity. The friction coefficients (COFs) between Si3N4 balls and TiO2 plates in the mixtures of sulfuric acid (H2SO4) solution and glycerol solution were obviously reduced, and the system entered the superlubricity region (COF < 0.01) after UV illumination at a speed of 56 mm/s. However, the COF was much larger without UV treatment than that with UV treatment. The formation of silica (SiO2) layers on the surfaces of Si3N4 balls and the elastohydrodynamic effects were determined to be fundamental to the low friction in this experiment, and the enhancement of the combination between the TiO2 surface and the hydroxy group of glycerol by UV illumination was the key to the photoinduced superlubricity in this system. These findings showed one method for achieving superlubricity by introducing a light field that could be further applied to special working conditions.

Keywords