Journal of Analytical Methods in Chemistry (Jan 2014)
Determination of 16 Selected Trace Elements in Children Plasma from China Economical Developed Rural Areas Using High Resolution Magnetic Sector Inductively Coupled Mass Spectrometry
Abstract
A rapid, accurate, and high performance method of high resolution sector field inductively coupled plasma mass spectrometry (HR-ICP-MS) combined with a small-size sample (0.1 mL) preparation was established. The method was validated and applied for the determination of 16 selected plasma trace elements (Fe, Cu, Zn, Rb, B, Al, Se, Sr, V, Cr, Mn, Co, As, Mo, Cd, and Pb). The linear working ranges were over three intervals, 0-1 μg/L, 0–10 μg/L and 0–100 μg/L. Correlation coefficients (R2) ranged from 0.9957 to 0.9999 and the limits of quantification (LOQ) ranged from 0.02 μg/L (Rb) to 1.89 μg/L (Se). The trueness (or recovery) spanned from 89.82% (Al) to 119.15% (Se) and precision expressed by the relative standard deviation (RSD %) for intra-day ranging from 1.1% (Zn) to 9.0% (Se), while ranged from 3.7% (Fe) to 12.7% (Al) for interday. A total of 440 plasma samples were collected from Chinese National Nutrition and Health Survey Project 2002 (CNNHS 2002), which represented the status of plasma trace elements for the children aged 3–12 years from China economical developed rural areas. The concentrations of 16 trace elements were summarized and compared by age groups and gender, which can be used as one of the basic components for the formulation of the baseline reference values of trace elements for the children in 2002.