Journal of Manufacturing and Materials Processing (May 2024)
Exploring Multi-Armed Bandit (MAB) as an AI Tool for Optimising GMA-WAAM Path Planning
Abstract
Conventional path-planning strategies for GMA-WAAM may encounter challenges related to geometrical features when printing complex-shaped builds. One alternative to mitigate geometry-related flaws is to use algorithms that optimise trajectory choices—for instance, using heuristics to find the most efficient trajectory. The algorithm can assess several trajectory strategies, such as contour, zigzag, raster, and even space-filling, to search for the best strategy according to the case. However, handling complex geometries by this means poses computational efficiency concerns. This research aimed to explore the potential of machine learning techniques as a solution to increase the computational efficiency of such algorithms. First, reinforcement learning (RL) concepts are introduced and compared with supervised machining learning concepts. The Multi-Armed Bandit (MAB) problem is explained and justified as a choice within the RL techniques. As a case study, a space-filling strategy was chosen to have this machining learning optimisation artifice in its algorithm for GMA-AM printing. Computational and experimental validations were conducted, demonstrating that adding MAB in the algorithm helped to achieve shorter trajectories, using fewer iterations than the original algorithm, potentially reducing printing time. These findings position the RL techniques, particularly MAB, as a promising machining learning solution to address setbacks in the space-filling strategy applied.
Keywords