MethodsX (Jan 2020)

Refinement of the zebrafish embryo developmental toxicity assay

  • Jente Hoyberghs,
  • Chloé Bars,
  • Casper Pype,
  • Kenn Foubert,
  • Miriam Ayuso Hernando,
  • Chris Van Ginneken,
  • Jonathan Ball,
  • Steven Van Cruchten

Journal volume & issue
Vol. 7
p. 101087

Abstract

Read online

Several pharmaceutical and chemical companies are using the zebrafish embryo as an alternative to animal testing for early detection of developmental toxicants. Unfortunately, the protocol of this zebrafish embryo assay varies between labs, resulting in discordant data for identical compounds. The assay also has some limitations, such as low biotransformation capacity and fewer morphological endpoints in comparison with the in vivo mammalian developmental toxicity studies. Consequently, there is a need to standardize and further optimize the assay for developmental toxicity testing. We developed a Zebrafish Embryo Developmental Toxicity Assay (ZEDTA) that can be extended with a metabolic activation system and/or skeletal staining to increase its sensitivity. As such, the ZEDTA can be used as a modular system depending on the compound of interest. • Our protocol is customized with a metabolic activation system for test compounds, using human liver microsomes. This system ensures exposure of zebrafish embryos to metabolites that are relevant for human risk and safety assessment. As human liver microsomes are toxic for the zebrafish embryo, we developed a preincubation system with an ultracentrifugation and subsequent dilution step. • Additionally, we developed a skeletal staining protocol that can be added to the ZEDTA modular system. Our live Alizarin Red staining method detects several bone structures in 5-day old zebrafish larvae in a consistent manner.

Keywords