Reduced Thermal Conductivity in Nanostructured AgSbTe<sub>2</sub> Thermoelectric Material, Obtained by Arc-Melting
Javier Gainza,
Federico Serrano-Sánchez,
Oscar J. Dura,
Norbert M. Nemes,
Jose Luis Martínez,
María Teresa Fernández-Díaz,
José Antonio Alonso
Affiliations
Javier Gainza
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
Federico Serrano-Sánchez
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
Oscar J. Dura
Departamento de Física Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
Norbert M. Nemes
Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
Jose Luis Martínez
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
María Teresa Fernández-Díaz
Institut Laue Langevin, BP 156X, 38042 Grenoble, France
José Antonio Alonso
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
AgSbTe2 intermetallic compound is a promising thermoelectric material. It has also been described as necessary to obtain LAST and TAGS alloys, some of the best performing thermoelectrics of the last decades. Due to the random location of Ag and Sb atoms in the crystal structure, the electronic structure is highly influenced by the atomic ordering of these atoms and makes the accurate determination of the Ag/Sb occupancy of paramount importance. We report on the synthesis of polycrystalline AgSbTe2 by arc-melting, yielding nanostructured dense pellets. SEM images show a conspicuous layered nanostructuration, with a layer thickness of 25–30 nm. Neutron powder diffraction data show that AgSbTe2 crystalizes in the cubic Pm-3m space group, with a slight deficiency of Te, probably due to volatilization during the arc-melting process. The transport properties show some anomalies at ~600 K, which can be related to the onset temperature for atomic ordering. The average thermoelectric figure of merit remains around ~0.6 from ~550 up to ~680 K.