Computation (Jan 2022)

Numerical Study on the Thermal Field and Heat Transfer Characteristics of a Hexagonal-Close-Packed Pebble Bed

  • Leisheng Chen,
  • Jiahao Zhao,
  • Yuejin Yuan,
  • Jaeyoung Lee

DOI
https://doi.org/10.3390/computation10010001
Journal volume & issue
Vol. 10, no. 1
p. 1

Abstract

Read online

Fuel elements in a high-temperature gas-cooled reactor (HTGR) core may be stacked with a hexagonal close-packed (HCP) structure; therefore, analyzing the temperature distribution and heat transfer efficiency in the HCP pebble bed is of great significance to the design and safety of HTGR cores. In this study, the heat transfer characteristics of an HCP pebble bed are studied using CFD. The thermal fields and convective heat transfer coefficients under different coolant inlet velocities are obtained, and the velocity fields in the gap areas are also analyzed in different planes. It is found that the strongest heat transfer is shown near the right vertices of the top and bottom spheres, while the weakest heat transfer takes place in areas near the contact points where no fluid flows over; in addition, the correlation of the overall heat transfer coefficient with the Reynolds number is proposed as havg = 0.1545(k/L)Re0.8 (Pr = 0.712, 1.6 × 104 ≤ Re ≤ 4 × 104). It is also found that the heat transfer intensity of the HCP structure is weaker than that of the face-centered-cubic structure. These findings provide a reference for reactor designers and will contribute to the development of safer pebble-bed cores.

Keywords