Pharmaceutics (Feb 2025)

Toxicity, Half-Life and Antitumor Activity of Phenyl 4-(2-Oxo-3-alkylimidazolidin-1-yl)benzenesulfonates as Novel Antimitotic CYP1A1-Targeted Prodrugs in Female Mouse Models

  • Atziri Corin Chavez Alvarez,
  • Chahrazed Bouzriba,
  • Vincent Ouellette,
  • Mathieu Gagné-Boulet,
  • Alexandre Patenaude,
  • Sylvie Pilote,
  • René C.-Gaudreault,
  • Chantale Simard,
  • Sébastien Fortin

DOI
https://doi.org/10.3390/pharmaceutics17020233
Journal volume & issue
Vol. 17, no. 2
p. 233

Abstract

Read online

Background/Objectives: Chemoresistance of breast cancers (BCs) is a major impediment to current chemotherapeutics that urges the development of new drugs and new therapeutic approaches. To that end, phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) were recently prepared to fulfill some of the unmet needs with classic chemotherapeutics. PAIB-SOs are prodrugs bioactivated into potent antimitotics by the cytochrome P450 1A1 (CYP1A1), which is a frequent enzyme in resistant BC cells, but mostly missing in normal cells. Our screening program studies of PAIB-SO chemolibraries selected three prototypical PAIB-SOs as antimitotic prodrugs amenable for studies using BC animal models. Methods: Healthy female CD1® IGS mice were treated with three prototypical PAIB-SOs, namely CEU-835, -934, and -938, for the determination of their toxicity and half-lives. Moreover, MCF7 tumor-bearing CD1-Foxn1nu Nude female mice were treated with the three prototypical PAIB-SOs for the determination of their antitumor activity. Results: Herein, we show that multi-intravenous administrations of CEU-835, -934, and -938 at their maximal solubilities are well tolerated in healthy female CD1® IGS mice, as depicted by the evaluation of distress behaviors, organ necropsy, total blood cell count, and histology. Moreover, the half-life of CEU-835, -934, and -938 administered intravenously in healthy CD1® IGS female mice were 8.1, 23.2, and 21.5 h, respectively. Finally, their intravenous administrations of CEU-934 and -938 decreased MCF7 tumor growth as efficiently as paclitaxel in MCF7 tumor-bearing CD1-Foxn1nu Nude mouse model. Conclusions: overall, our study demonstrated for the first time that pentyl-bearing PAIB-SOs are new CYP1A1-dependent prodrugs efficiently decrease breast cancer tumor growth, and show no side effects at their pharmacological concentration in mouse models.

Keywords