Energy Reports (Nov 2022)

Measurement of electromagnetic environment of hybrid DC circuit breaker during bipolar short circuit fault

  • Zihan Teng,
  • Weijiang Chen,
  • Jun Zhao,
  • Jiangong Zhang,
  • Zheyuan Gan,
  • Kejie Li

Journal volume & issue
Vol. 8
pp. 1328 – 1335

Abstract

Read online

Hybrid DC circuit breakers (DCBs) have recently been used to break short-circuit fault currents to ensure safety in flexible DC transmission projects. However, electromagnetic transients from DCB operation can interfere with the secondary equipment and cause malfunctions. In this paper, the bipolar short-circuit test, which is the first short-circuit test for DC transmission line in flexible DC project in the world, has been carried out in the 200 kV HVDC converter station equipped with two hybrid DCBs. The transient magnetic field near the secondary equipment in the DCB hall were measured, and its characteristics were discussed. Furthermore, the relationships among the space magnetic field, the short-circuit current and the action of the power electronic equipment in the DCB were also analyzed The main findings are as follows. During the bipolar short-circuit process, the maximum space magnetic field intensity near the secondary device is 109 A/m, and the maximum rising rate of the magnetic field waveform is about 350 A/m/ms. The magnetic field strength reached its peak value at the moment when the DCB was blocked, as well as the short-circuit current. It can be indicated that the DCB can cut off the short-circuit fault current accurately and reliably. The results can provide reference for the immunity evaluation and anti-interference protection of secondary equipment, and its optimal arrangement in the DCB hall.

Keywords