A CRISPR-Cas and Tat Peptide with Fluorescent RNA Aptamer System for Signal Amplification in RNA Imaging
Heng Tang,
Junran Peng,
Xin Jiang,
Shuang Peng,
Fang Wang,
Xiaocheng Weng,
Xiang Zhou
Affiliations
Heng Tang
Department of Clinical Laboratory, Center for Gene Diagnosis, Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
Junran Peng
Department of Clinical Laboratory, Center for Gene Diagnosis, Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
Xin Jiang
Department of Clinical Laboratory, Center for Gene Diagnosis, Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
Shuang Peng
Department of Clinical Laboratory, Center for Gene Diagnosis, Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
Fang Wang
School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
Xiaocheng Weng
Department of Clinical Laboratory, Center for Gene Diagnosis, Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
Xiang Zhou
Department of Clinical Laboratory, Center for Gene Diagnosis, Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
We reported on an efficient RNA imaging strategy based on a CRISPR-Cas and Tat peptide with a fluorescent RNA aptamer (TRAP-tag). Using modified CRISPR-Cas RNA hairpin binding proteins fused with a Tat peptide array that recruits modified RNA aptamers, this simple and sensitive strategy is capable of visualizing endogenous RNA in cells with high precision and efficiency. In addition, the modular design of the CRISPR-TRAP-tag facilitates the substitution of sgRNAs, RNA hairpin binding proteins, and aptamers in order to optimize imaging quality and live cell affinity. With CRISPR-TRAP-tag, exogenous GCN4, endogenous mRNA MUC4, and lncRNA SatIII were distinctly visualized in single live cells.