Energies (Jan 2025)
Experimental Characterization of Reversible Oil-Flooded Twin-Screw Compressor/Dry Expander for a Micro-Scale Compressed Air Energy Storage System
Abstract
The reversible use of a volumetric machine as a compressor and expander shows potential for micro-scale compressed air energy storage systems because of lower investment costs and higher operational flexibility. This paper investigates experimentally the reversible use of a 3 kW oil-flooded twin-screw compressor as an expander for a micro-scale compressed air energy storage system to assess its operation while minimizing operating costs and the need for adjustments. As a result, the oil injection was only implemented in the compressor operation since the oil takes part in the compression process, while its use appears optional in expander operation. The results indicate that the compressor exhibited an efficiency in the range of 0.57–0.80 and required an input power from 1 kW up to 3 kW. These values decreased for the expander, whose efficiency was in the range of 0.24–0.38 and the delivered power between 300 and 1600 W. The experimental data allow assessing the operation of such machine in a hypothetical micro-scale compressed air energy storage. The calculation revealed that this machine may operate in this energy storage asset and deliver up to 90% of the power recovered in the charging process when the temperature of the stored air is 80 °C.
Keywords