PLoS ONE (Jan 2021)

Development of a novel ALK rearrangement screening test for non-small cell lung cancers.

  • Yi-Lin Chen,
  • Wan-Li Chen,
  • Yi-Chia Cheng,
  • Ming-Ching Lin,
  • Shu-Ching Yang,
  • Hung-Wen Tsai,
  • Chien-Chung Lin,
  • Wu-Chou Su,
  • Nan-Haw Chow,
  • Chung-Liang Ho

DOI
https://doi.org/10.1371/journal.pone.0257152
Journal volume & issue
Vol. 16, no. 9
p. e0257152

Abstract

Read online

Approximately 5-7% of non-small cell lung cancer (NSCLC) cases harbor an anaplastic lymphoma kinase (ALK) fusion gene and may benefit from ALK inhibitor therapy. To detect ALK fusion genes, we developed a novel test using reverse transcription polymerase chain reaction (RT-PCR) for the ALK kinase domain (KD). Since ALK expression is mostly silenced in the adult with the exception of neuronal tissue, the normal lung tissue, mesothelial lining, and inflammatory cells are devoid of ALK transcript, making ALK KD RT-PCR an ideal surrogate test for ALK fusion transcripts in lung or pleural effusion. The test was designed with a short PCR product (197 bp) to work for both malignant pleural effusion (MPE) and formalin-fixed, paraffin-embedded (FFPE) NSCLC samples. Using ALK IHC as a reference, the sensitivity of the test was 100% for both MPE and FFPE. The specificity was 97.6% for MPE and 97.4% for FFPE. Two false positive cases were found. One was a metastatic brain lesion which should be avoided in the future due to intrinsic ALK expression in the neuronal tissue. The other one resulted from ALK gene amplification. Due to potential false positivity, subsequent confirmation tests such as fluorescence in situ hybridization or multiplex PCR would be preferable. Nevertheless, the test is simple and inexpensive with no false negativity, making it a desirable screening test. It also offers an advantage over multiplex RT-PCR with the capability to detect novel ALK fusions. Indeed through the screening test, we found a novel ALK fusion partner (sperm antigen with calponin homology and coiled-coil domains 1 like gene, SPECC1L) with increased sensitivity to crizotinib in vitro. In summary, a novel RNA-based ALK KD analysis was developed for ALK rearrangement screening in MPE and FFPE specimens of NSCLC. This simple inexpensive test can be implemented as routine diagnostics.