Sensors (Aug 2024)

Asynchronous Code Division Multiplexing-Based Visible Light Positioning and Communication Network Using Successive Interference Cancellation Decoding

  • Zhongxu Liu,
  • Xiaodi You,
  • Changyuan Yu

DOI
https://doi.org/10.3390/s24175609
Journal volume & issue
Vol. 24, no. 17
p. 5609

Abstract

Read online

In the evolving landscape of sixth-generation wireless communication, the integration of visible light communication (VLC) and visible light positioning (VLP), known as visible light positioning and communication (VLPC), emerges as a pivotal technology. This study addresses the challenges of asynchronous code division multiplexing (ACDM) in VLPC networks, focusing on the enhancement of data transmission quality and positioning accuracy. Firstly, we propose an orthogonal pseudo-random code (OPRC) for ACDM-based VLP systems. Leveraging its excellent correlation properties, VLP signals preserve orthogonality even amidst asynchronous transmissions, achieving sub-centimeter average positioning errors. Next, by combining OPRC with successive interference cancellation decoding (SICD), we propose an enhanced ACDM-based VLPC system that utilizes OPRC for improved signal orthogonality and SICD for progressive elimination of multiple access interference (MAI) among VLPC signals. The results show substantial improvements in bit-error rate (BER) and positioning error (PE), approaching the performance levels observed in synchronized VLPC systems. Specifically, the SICD-OPRC scheme reduces average BER to 4.3 × 10−4 and average PE to 2.7 cm, demonstrating its robustness and superiority in complex asynchronous scenarios.

Keywords