LGR4, Not LGR5, Enhances hPSC Hematopoiesis by Facilitating Mesoderm Induction via TGF-Beta Signaling Activation
Yu Wang,
Hongtao Wang,
Jiaojiao Guo,
Jie Gao,
Mengge Wang,
Meijuan Xia,
Yuqi Wen,
Pei Su,
Ming Yang,
Mingyao Liu,
Lihong Shi,
Tao Cheng,
Wen Zhou,
Jiaxi Zhou
Affiliations
Yu Wang
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
Hongtao Wang
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
Jiaojiao Guo
Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning Commission; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
Jie Gao
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
Mengge Wang
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
Meijuan Xia
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
Yuqi Wen
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
Pei Su
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
Ming Yang
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
Mingyao Liu
Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
Lihong Shi
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
Tao Cheng
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
Wen Zhou
Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning Commission; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Corresponding author
Jiaxi Zhou
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China; Corresponding author
Summary: Attempts to generate functional blood cells from human pluripotent stem cells (hPSCs) remain largely unsuccessful, mainly due to the lack of understanding of the regulatory network of human hematopoiesis. In this study, we identified leucine-rich-repeat-containing G-protein-coupled receptor 4 (LGR4) as an essential regulator of early hematopoietic differentiation of hPSCs. The deletion of LGR4 severely impairs mesoderm development, thereby limiting hematopoietic differentiation both in vitro and in vivo. In contrast, LGR5 is dispensable for hPSC hematopoiesis. The four R-spondin proteins show differential activities and dependencies on LGR4 in hematopoietic differentiation. The deletion of LGR4 almost entirely abolishes the enhancement induced by R-spondin1 and R-spondin3, but not R-spondin2. In addition, ZNRF3 is required for the response of R-spondin1–R-spondin3. At the mechanistic level, LGR4 regulates transforming growth factor beta (TGF-beta) signaling to control hematopoietic differentiation. Together, our results reveal vital roles of LGR4 in hematopoietic development and uncover distinct functions and underlying mechanisms for R-spondins.