Machines (Aug 2023)

Simulation of the Circulating Bearing Currents for Different Stator Designs of Electric Traction Machines

  • Yusa Tombul,
  • Philipp Tillmann,
  • Jakob Andert

DOI
https://doi.org/10.3390/machines11080811
Journal volume & issue
Vol. 11, no. 8
p. 811

Abstract

Read online

Pulse–width modulated inverters are commonly used to control electrical drives, generating a common mode voltage and current with high–frequency components that excite the parasitic capacitances within electric machines, such as permanent magnet synchronous machines or induction machines. This results in different types of bearing currents that can shorten the service life of electric machines. One significant type of inverter–induced bearing currents are high–frequency circulating bearing currents. In this context, this work employs finite element analysis and time-domain simulations to determine the common mode current and circulating bearing current for various permanent magnet synchronous machine designs based on the traction machines of commercial electric vehicles with a focus on the stator. The results suggest that the ratio between the circulating bearing current and common mode current is much smaller in permanent magnet synchronous machines for traction applications than previously established in conventional induction machines, with values below 10% for all analyzed designs. A further increase in the robustness of such electric machines to the detrimental effects caused by the inverter supply could be achieved by reducing the parasitic winding–to–stator capacitance or by increasing the stator endwinding leakage inductance.

Keywords