Scientific Reports (Feb 2022)
Microstrip sensor and methodology for the determination of complex anisotropic permittivity using perturbation techniques
Abstract
Abstract In this work, a sensor in microstrip technology and a methodology for measuring the real part and the imaginary part of the complex uniaxial permittivity of solid anisotropic samples are presented. The sensor is based on a pair of parallel lines coupled resonators and a cleft arranged in the coupling region which allows to hold the samples under test (SUTs). The proposed methodology relates the change in the even/odd resonance frequency with the real part of the permittivity in the vertical/horizontal direction, and the change in the Q factor of the even/odd mode with the imaginary part of the permittivity in the vertical/horizontal direction. The methodology was successfully verified with the characterization, at 2.43 GHz of anisotropic samples of printed PLA, Diclad 880, and RO4350B using the knowns materials: RT5870, PTFE and RO4003.