Current Issues in Molecular Biology (Jan 2024)

Phenotyping and Exploitation of Kompetitive Allele-Specific PCR Assays for Genes Underpinning Leaf Rust Resistance in New Spring Wheat Mutant Lines

  • Saule Kenzhebayeva,
  • Shynarbek Mazkirat,
  • Sabina Shoinbekova,
  • Saule Atabayeva,
  • Alfia Abekova,
  • Nargul Omirbekova,
  • Gulina Doktyrbay,
  • Saltant Asrandina,
  • Dinara Zharassova,
  • Aigul Amirova,
  • Albrecht Serfling

DOI
https://doi.org/10.3390/cimb46010045
Journal volume & issue
Vol. 46, no. 1
pp. 689 – 709

Abstract

Read online

Leaf rust (Puccinia triticina Eriks) is a wheat disease causing substantial yield losses in wheat production globally. The identification of genetic resources with permanently effective resistance genes and the generation of mutant lines showing increased levels of resistance allow the efficient incorporation of these target genes into germplasm pools by marker-assisted breeding. In this study, new mutant (M3 generation) lines generated from the rust-resistant variety Kazakhstanskaya-19 were developed using gamma-induced mutagenesis through 300-, 350-, and 400-Gy doses. In field trials after leaf rust inoculation, 75 mutant lines showed adult plant resistance. These lines were evaluated for resistance at the seedling stage via microscopy in greenhouse experiments. Most of these lines (89.33%) were characterized as resistant at both developmental stages. Hyperspectral imaging analysis indicated that infected leaves of wheat genotypes showed increased relative reflectance in visible and near-infrared light compared to the non-infected genotypes, with peak means at 462 and 644 nm, and 1936 and 2392 nm, respectively. Five spectral indexes, including red edge normalized difference vegetation index (RNDVI), structure-insensitive pigment index (SIPI), ratio vegetation index (RVSI), water index (WI), and normalized difference water index (NDWI), demonstrated significant potential for determining disease severity at the seedling stage. The most significant differences in reflectance between susceptible and resistant mutant lines appeared at 694.57 and 987.51 nm. The mutant lines developed were also used for the development and validation of KASP markers for leaf rust resistance genes Lr1, Lr2a, Lr3, Lr9, Lr10, and Lr17. The mutant lines had high frequencies of “a” resistance alleles (0.88) in all six Lr genes, which were significantly associated with seedling resistance and suggest the potential of favorable haplotype introgression through functional markers. Nine mutant lines characterized by the presence of “b” alleles in Lr9 and Lr10—except for one line with allele “a” in Lr9 and three mutant lines with allele “a” in Lr10—showed the progressive development of fungal haustorial mother cells 72 h after inoculation. One line from 300-Gy-dosed mutant germplasm with “b” alleles in Lr1, Lr2a, Lr10, and Lr17 and “a” alleles in Lr3 and Lr9 was characterized as resistant based on the low number of haustorial mother cells, suggesting the contribution of the “a” alleles of Lr3 and Lr9.

Keywords