Photonics (Mar 2019)
Numerical Study on the Soliton Mode-Locking of the Er3+-Doped Fluoride Fiber Laser at ~3 μm with Nonlinear Polarization Rotation
Abstract
Recent interest in the application of mid-infrared (mid-IR) lasers has made the generation of ~3 µm ultrafast pulses a hot topic. Recently, the generation of femtosecond-scale pulses in Er3+-doped fluoride fiber lasers has been realized by nonlinear polarization rotation (NPR). However, a numerical study on these fiber lasers has not been reported yet. In this work, the output properties of the NPR passively mode-locked Er3+-doped fluoride fiber ring laser in ~3 µm have been numerically investigated based on the coupled Ginzburg–Landu equation. The simulation results indicate that stable uniform solitons (0.75 nJ) with the pulse duration of femtosecond-scale can be generated from this fiber laser. This numerical investigation can provide some reference for developing the high energy femtosecond soliton fiber lasers in the mid-IR.
Keywords