Heliyon (Sep 2024)
Assessment of the impact of cold plasma technology on physicochemical properties of corn starch flour and the associated modified corn starch incorporated into milk dessert
Abstract
The utilization of cold plasma can be used as an alternative method to modify the properties of starch. This research aimed to examine the use of cold plasma technology to alter the structure of corn starch and investigate how its functionality could be improved using a food model (milk dessert). Modified corn starch by plasma technology under different gas contents (dielectric-barrier discharge (DBD)) (95 % argon+5 % hydrogen (DBD1) and 90 % argon+10 % oxygen (DBD2)) was compared to the control sample of corn starch. The physicochemical characteristics of modified corn starch, DSC, XRD, SEM and FTIR tests were evaluated. The findings demonstrated that corn starch had significantly higher solubility, transparency, ash, oil absorption capacity (OAC), and resistant starch (RS) when exposed to cold plasma under the test circumstances compared to the control sample. SEM analysis confirmed that plasma affected the surface of starch granules, making the surface changes more pronounced when oxygen was added to the treatment. It was concluded that the sample should be treated with plasma containing 90 % argon and 10 % oxygen (as the best sample). The best sample (modified corn starch) was used to prepare a milk dessert as a food model, and considerable differences were found between the modified starch treated sample and control samples in terms of moisture, brix, syneresis, and organoleptic properties (p < 0.05).