Efficiency of Machine Learning Algorithms for the Determination of Macrovesicular Steatosis in Frozen Sections Stained with Sudan to Evaluate the Quality of the Graft in Liver Transplantation
Fernando Pérez-Sanz,
Miriam Riquelme-Pérez,
Enrique Martínez-Barba,
Jesús de la Peña-Moral,
Alejandro Salazar Nicolás,
Marina Carpes-Ruiz,
Angel Esteban-Gil,
María Del Carmen Legaz-García,
María Antonia Parreño-González,
Pablo Ramírez,
Carlos M. Martínez
Affiliations
Fernando Pérez-Sanz
Biomedical Informatics & Bioinformatics Service, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
Miriam Riquelme-Pérez
CNRS-CEA, University Paris-Saclay, MIRCen, 92265 Paris, France
Enrique Martínez-Barba
Pathology Service, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
Jesús de la Peña-Moral
Pathology Service, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
Alejandro Salazar Nicolás
Pathology Service, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
Marina Carpes-Ruiz
Experimental Pathology Service, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
Angel Esteban-Gil
Biomedical Informatics & Bioinformatics Service, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
María Del Carmen Legaz-García
Biomedical Informatics & Bioinformatics Service, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
María Antonia Parreño-González
Biomedical Informatics & Bioinformatics Service, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
Pablo Ramírez
General and Digestive Surgery Service, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
Carlos M. Martínez
Experimental Pathology Service, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
Liver transplantation is the only curative treatment option in patients diagnosed with end-stage liver disease. The low availability of organs demands an accurate selection procedure based on histological analysis, in order to evaluate the allograft. This assessment, traditionally carried out by a pathologist, is not exempt from subjectivity. In this sense, new tools based on machine learning and artificial vision are continuously being developed for the analysis of medical images of different typologies. Accordingly, in this work, we develop a computer vision-based application for the fast and automatic objective quantification of macrovesicular steatosis in histopathological liver section slides stained with Sudan stain. For this purpose, digital microscopy images were used to obtain thousands of feature vectors based on the RGB and CIE L*a*b* pixel values. These vectors, under a supervised process, were labelled as fat vacuole or non-fat vacuole, and a set of classifiers based on different algorithms were trained, accordingly. The results obtained showed an overall high accuracy for all classifiers (>0.99) with a sensitivity between 0.844 and 1, together with a specificity >0.99. In relation to their speed when classifying images, KNN and Naïve Bayes were substantially faster than other classification algorithms. Sudan stain is a convenient technique for evaluating ME in pre-transplant liver biopsies, providing reliable contrast and facilitating fast and accurate quantification through the machine learning algorithms tested.