Energies (Nov 2016)
Flow Induced Vibration and Energy Extraction of an Equilateral Triangle Prism at Different System Damping Ratios
Abstract
The flow induced vibration and energy extraction of an equilateral triangle prism elastically mounted in a water channel are investigated experimentally at different system damping ratios ζtotal with the constant oscillating mass Mosc and system stiffness K. A power take-off system with a variable damping function is developed. The translation-rotation equation of the vibration system deduced in the study indicates that the total oscillating mass includes the material mass, and the equivalent mass due to the rotation of the gears and rotor. Besides, increasing load resistance can result in a decrease in ζtotal when K and Mosc remain unchanged. The prism experiences, in turn, soft galloping, hard galloping 1 and hard galloping 2 with increasing ζtotal. As ζtotal increases up to 0.335, only the vortex-induced vibration is observed because the extremely high ζtotal prevents the prism from galloping. The response amplitude decreases with the increasing ζtotal. In addition, higher ζtotal promotes the galloping to start at a higher reduced velocity. The galloping characteristics of the prism, including large amplitude responses in an extremely large range of flow velocities, excellent vibration stationarity, and steady vibration frequencies, are beneficial for improving energy conversion. The prism can extract hydraulic energy for the flow velocity U > 0.610 m/s. The harnessed power Pout and the energy conversion efficiency ηout increase with increasing ζtotal in the galloping zone. The maximum Pout and ηout reach 53.56 W and 40.44%, respectively. The optimal system damping ratio for extracting energy is the maximum system damping ratio that the prism can overcome to experience stable galloping.
Keywords