Frontiers in Human Neuroscience (Jul 2017)
Task Complexity Modulates Sleep-Related Offline Learning in Sequential Motor Skills
Abstract
Recently, a number of authors have advocated the introduction of gross motor tasks into research on sleep-related motor offline learning. Such tasks are often designed to be more complex than traditional key-pressing tasks. However, until now, little effort has been undertaken to scrutinize the role of task complexity in any systematic way. Therefore, the effect of task complexity on the consolidation of gross motor sequence memory was examined by our group in a series of three experiments. Criterion tasks always required participants to produce unrestrained arm movement sequences by successively fitting a small peg into target holes on a pegboard. The sequences always followed a certain spatial pattern in the horizontal plane. The targets were visualized prior to each transport movement on a computer screen. The tasks differed with respect to sequence length and structural complexity. In each experiment, half of the participants initially learned the task in the morning and were retested 12 h later following a wake retention interval. The other half of the subjects underwent practice in the evening and was retested 12 h later following a night of sleep. The dependent variables were the error rate and total sequence execution time (inverse to the sequence execution speed). Performance generally improved during acquisition. The error rate was always low and remained stable during retention. The sequence execution time significantly decreased again following sleep but not after waking when the sequence length was long and structural complexity was high. However, sleep-related offline improvements were absent when the sequence length was short or when subjects performed a highly regular movement pattern. It is assumed that the occurrence of sleep-related offline performance improvements in sequential motor tasks is associated with a sufficient amount of motor task complexity.
Keywords