Scientific Reports (Jan 2022)

Intracellular translocation of HMGB1 is important for Zika virus replication in Huh7 cells

  • Kim-Ling Chin,
  • Nurhafiza Zainal,
  • Sing-Sin Sam,
  • Pouya Hassandarvish,
  • Rafidah Lani,
  • Sazaly AbuBakar

DOI
https://doi.org/10.1038/s41598-022-04955-z
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Neonatal microcephaly and adult Guillain–Barré syndrome are severe complications of Zika virus (ZIKV) infection. The robustly induced inflammatory cytokine expressions in ZIKV-infected patients may constitute a hallmark for severe disease. In the present study, the potential role of high mobility group box 1 protein (HMGB1) in ZIKV infection was investigated. HMGB1 protein expression was determined by the enzyme-linked immunosorbent assay (ELISA) and immunoblot assay. HMGB1’s role in ZIKV infection was also explored using treatment with dexamethasone, an immunomodulatory drug, and HMGB1-knockdown (shHMGB1) Huh7 cells. Results showed that the Huh7 cells were highly susceptible to ZIKV infection. The infection was found to induce HMGB1 nuclear-to-cytoplasmic translocation, resulting in a > 99% increase in the cytosolic HMGB1 expression at 72-h post-infection (h.p.i). The extracellular HMGB1 level was elevated in a time- and multiplicity of infection (MOI)-dependent manner. Treatment of the ZIKV-infected cells with dexamethasone (150 µM) reduced HMGB1 extracellular release in a dose-dependent manner, with a maximum reduction of 71 ± 5.84% (P < 0.01). The treatment also reduced virus titers by over 83 ± 0.50% (P < 0.01). The antiviral effects, however, were not observed in the dexamethasone-treated shHMGB1 cells. These results suggest that translocation of HMGB1 occurred during ZIKV infection and inhibition of the translocation by dexamethasone coincided with a reduction in ZIKV replication. These findings highlight the potential of targeting the localization of HMGB1 in affecting ZIKV infection.