Molecular Genetics and Metabolism Reports (Dec 2023)
Clinical features of two Japanese siblings of neuronal ceroid lipofuscinosis type 1 (CLN1) complicated with TypeⅡ diabetes mellitus
Abstract
Neuronal ceroid lipofuscinosis type1(CLN1), is a one form of the group of neuronal ceroid lipofuscinoses (NCLs), which is a neurodegenerative disorder characterized by progressive psychomotor deterioration, ataxia, epilepsy, and visual impairment. Neurological manifestations occur at a wide range of ages, from infancy to adulthood, but are most common in infancy. The prevalence of CLN1 is unclear; however, it is very rare in Japan and Europe. In Japan, only a few cases have been reported, two of infantile- and one of juvenile-onset type. Nonetheless, the clinical characteristics of Japanese patients and their relationship with the genotype have not been sufficiently investigated. Here, we report the cases of two siblings that presented with juvenile-onset (a 22-year-old man and a 29-year-old woman) CLN1 associated with type II diabetes mellitus. In both cases, visual impairment followed by learning disability was observed from school-age, and retinitis pigmentosa was noted on ophthalmological examination. These patients presented type II diabetes mellitus during their later teenage years. Brain magnetic resonance imaging (MRI) revealed marked atrophy of the cerebrum and cerebellum. The clinical symptoms lead to suspect NCLs. Decreased PPT1 enzyme activity in dried blood spot (DBS)and leukocytes were observed, and the genetic analysis revealed heterozygous missense variants in PPT1, c.550G > A/c.664 A > G (p. Glu184Lys/p. Lys216Glu). The latter variant of this patients was novel variant. The residual enzymatic activity of PPT1 in these cases is higher than that in the infantile type. CLN1 mutant cells are known to have altered subcellular expression and localization, enhanced lipid raft-mediated endocytosis, abnormal autophagy, and mitochondrial dysfunction. Although the prevalence of diabetes mellitus is high and the possibility of coincidental complications cannot be ruled out, we concluded that mitochondrial abnormalities are involved in insulin resistance and may be implicated in the development of type II diabetes mellitus. Further studies are needed to prove the correlation between CLN1 and diabetes mellitus.