San Francisco Estuary and Watershed Science (Mar 2017)
A Bioenergetics Approach to Setting Conservation Objectives for Non-Breeding Shorebirds in California’s Central Valley
Abstract
https://doi.org/10.15447/sfews.2017v15iss1art2An extensive network of managed wetlands and flooded agriculture provides habitat for migrating and wintering shorebirds in California’s Central Valley. Yet with over 90% of historical wetlands in the region lost, Central Valley shorebird populations are likely diminished and limited by available habitat. To identify the timing and magnitude of any habitat limitations during the non-breeding season, we developed a bioenergetics model that examined whether currently available shorebird foraging habitat is sufficient to meet the daily energy requirements of the shorebird community, at either the baseline population size surveyed from 1992 to 1995 or double this size, which we defined as our long-term (100-year) population objectives. Using recent estimates of the extent of managed wetlands and flooded agriculture, satellite imagery of surface water, energy content of benthic invertebrates, and shorebird metabolic rates, we estimated that shorebird foraging habitat in the Central Valley is currently limited during the fall. If the population sizes were doubled, we estimated substantial energy shortfalls in the fall (late July–September) and spring (mid-March–April) totaling 4.02 billion kJ (95% CI: 2.23–5.83) and 7.79 billion kJ (2.00–14.14), respectively. We then estimated long-term habitat objectives as the minimum additional shorebird foraging habitat required to eliminate these energy shortfalls; the corresponding short-term (10-year) habitat objectives are to maintain an additional 2,160 ha (5,337 ac) of shallow (<10 cm) open water area in the fall and 4,692 ha (11,594 ac) in the spring. Because the Central Valley is one of the most important regions in the Pacific Flyway for migrating and wintering shorebirds, we expect that achieving these habitat objectives will benefit shorebirds well beyond the Central Valley. Our bioenergetics approach provides a transparent, repeatable process for identifying the timing and magnitude of habitat limitations as well as the most efficient strategies for achieving conservation objectives.