Curved and Layered Structures (Jan 2019)

An analytical solution for static problems of curved composite beams

  • Ecsedi István,
  • Lengyel Ákos József

DOI
https://doi.org/10.1515/cls-2019-0009
Journal volume & issue
Vol. 6, no. 1
pp. 105 – 116

Abstract

Read online

An analytical solution is presented for the determination of deformation of curved composite beams. Each cross-section is assumed to be symmetrical and the applied loads are acted in the plane of symmetry of curved beam. In-plane deformations are considered of composite curved beams. Assumed form of the displacement field assures the fulfillment of the classical Bernoulli-Euler beam theory. The curvature of beam is constant and the internal forces in a cross-section is replaced by an equivalent forcecouple system at the origin of the cylindrical coordinate system used. The internal forces are expressed in terms of two kinematical variables, which are the radial displacement and the rotation of the cross-sections. The determination of the analytical solutions of the considered static problems are based on the fundamental solutions. Linear combination of the fundamental solutions which are filling to the given loading and boundary conditions, gives the total solution. Closed form formulae are derived for the radial displacement, cross-sectional rotation, nomral and shear forces and bending moments. The circumferential and radial normal stresses and shear stresses are obtained by the integration of equilibrium equations. Examples illustrate the developed method.

Keywords