Natural Gas Industry B (Mar 2015)

Genesis mechanism of the Sinian-Cambrian reservoirs in the Anyue Gas Field, Sichuan Basin

  • Zhou Jingao,
  • Yao Genshun,
  • Yang Guang,
  • Zhang Jianyong,
  • Hao Yi,
  • Wang Fang,
  • Gu Mingfeng,
  • Li Wenzheng

DOI
https://doi.org/10.1016/j.ngib.2015.07.001
Journal volume & issue
Vol. 2, no. 2
pp. 127 – 135

Abstract

Read online

The Lower Cambrian Longwangmiao Fm, the 4th and 2nd members of the Sinian Dengying Fm are the three major gas layers in the Anyue Gas Field of the Sichuan Basin. Their main characteristics and genesis mechanism were investigated, and the following three findings were obtained. First, according to sedimentary microfacies, lithology and porosity, the Longwangmiao Fm is identified as fractured-vuggy dolomite reservoir of grain shoal facies, the 4th member of the Dengying Fm as fractured-vuggy (cavernous) dolomite reservoir of cyanobacteria mound beach facies, and the 2nd member of the Dengying Fm as fractured-vuggy dolomite reservoirs of cyanobacteria mound beach facies. Second, the Longwangmiao Fm is mainly grain dolomite, with dissolution pores and vugs as major reservoir space, at an average porosity of 4.24% and an average thickness of 36 m. The 4th member of the Dengying Fm made up of cyanobacteria dolomite has dissolution pores, vugs and caverns as major reservoir space with an average porosity of 3.22% and an average thickness of 70 m. The 2nd member of the Dengying Fm composed of cyanobacteria dolomite has fractures and vugs as major reservoir space with an average porosity of 3.34% and an average thickness of 80 m. Third, those reservoirs experienced multiple evolutionary stages including porosity development, hydrothermal mineral filling, asphalt filling etc. Penecontemporaneous dissolution and supergene karstification are the key factors controlling the formation of the reservoir space and the evolution models of the reservoirs were figured out.

Keywords