Cancer Cell International (Dec 2018)

ERK-mediated autophagy promotes inactivated Sendai virus (HVJ-E)-induced apoptosis in HeLa cells in an Atg3-dependent manner

  • Tao Wang,
  • Ning Yu,
  • Miao Qian,
  • Jie Feng,
  • Shuyang Cao,
  • Jun Yin,
  • Quan Zhang

DOI
https://doi.org/10.1186/s12935-018-0692-y
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Apoptosis and autophagy are known to play important roles in cancer development. It has been reported that HVJ-E induces apoptosis in cancer cells, thereby inhibiting the development of tumors. To define the mechanism by which HVJ-E induces cell death, we examined whether HVJ-E activates autophagic and apoptotic signaling pathways in HeLa cells. Methods Cells were treated with chloroquine (CQ) and rapamycin to determine whether autophagy is involved in HVJ-E-induced apoptosis. Treatment with the ERK inhibitor, U0126, was used to determine whether autophagy and apoptosis are mediated by the ERK pathway. Activators of the PI3K/Akt/mTOR/p70S6K pathway, 740 Y-P and SC79, were used to characterize its role in HVJ-E-induced autophagy. siRNA against Atg3 was used to knock down the protein and determine whether it plays a role in HVJ-E-induced apoptosis in HeLa cells. Results We found that HVJ-E infection inhibited cell viability and induced apoptosis through the mitochondrial pathway, as evidenced by the expression of caspase proteins. This process was promoted by rapamycin treatment and inhibited by CQ treatment. HVJ-E-induced autophagy was further blocked by 740 Y-P, SC79, and U0126, indicating that both the ERK- and the PI3K/Akt/mTOR/p70S6K-pathways were involved. Finally, autophagy-mediated apoptosis induced by HVJ-E was inhibited by siRNA-mediated Atg3 knockdown. Conclusion In HeLa cells, HVJ-E infection triggered autophagy through the PI3K/Akt/mTOR/p70S6K pathway in an ERK1/2-dependent manner, and the induction of autophagy promoted apoptosis in an Atg3-dependent manner.

Keywords