PLOS Global Public Health (Jan 2022)
Robust models of disease heterogeneity and control, with application to the SARS-CoV-2 epidemic
Abstract
In light of the continuing emergence of new SARS-CoV-2 variants and vaccines, we create a robust simulation framework for exploring possible infection trajectories under various scenarios. The situations of primary interest involve the interaction between three components: vaccination campaigns, non-pharmaceutical interventions (NPIs), and the emergence of new SARS-CoV-2 variants. Additionally, immunity waning and vaccine boosters are modeled to account for their growing importance. New infections are generated according to a hierarchical model in which people have a random, individual infectiousness. The model thus includes super-spreading observed in the COVID-19 pandemic which is important for accurate uncertainty prediction. Our simulation functions as a dynamic compartment model in which an individual’s history of infection, vaccination, and possible reinfection all play a role in their resistance to further infections. We present a risk measure for each SARS-CoV-2 variant,