Journal of High Energy Physics (Oct 2022)

Invariant representation driven neural classifier for anti-QCD jet tagging

  • Taoli Cheng,
  • Aaron Courville

DOI
https://doi.org/10.1007/JHEP10(2022)152
Journal volume & issue
Vol. 2022, no. 10
pp. 1 – 34

Abstract

Read online

Abstract We leverage representation learning and the inductive bias in neural-net-based Standard Model jet classification tasks, to detect non-QCD signal jets. In establishing the framework for classification-based anomaly detection in jet physics, we demonstrate that, with a well-calibrated and powerful enough feature extractor, a well-trained mass-decorrelated supervised Standard Model neural jet classifier can serve as a strong generic anti-QCD jet tagger for effectively reducing the QCD background. Imposing data-augmented mass-invariance (and thus decoupling the dominant factor) not only facilitates background estimation, but also induces more substructure-aware representation learning. We are able to reach excellent tagging efficiencies for all the test signals considered. In the best case, we reach a background rejection rate of 51 and a significance improvement factor of 3.6 at 50% signal acceptance, with the jet mass decorrelated. This study indicates that supervised Standard Model jet classifiers have great potential in general new physics searches.

Keywords